[image:]

Teaching programming in primary school:
curriculum, didactic methods, textbooks, online support
CodeInnova
Project co-funded by European Union under Erasmus+ Programme

	TITLE: Find and correct mistakes and make your program work

	LEARNING SCENARIO

	School:
	Duration (minutes):
	90

	Teacher:
	
	Students
age:
	12

	 Essential Idea:
	Most errors in writing a program come down to syntax.

	Topics:

	· Pupils plan, anticipate, monitor, create and adjust programs.

	Aims:

	· Pupils design and create a working animation or program for a specific purpose.

	Outcomes:

	· Pupils can plan, anticipate, monitor, create and adjust programs.

	Work forms:

· individual work
· work in pairs
· group work

Methods:

	· presentation
· discussion
· interactive exercise

	ARTICULATION

	Course of action (duration, minutes)

	INTRODUCTION

	The teacher explains and starts a discussion with the pupils:
Writing our first programs and having them do what we want to do is a lot of fun, but it is also frustrating to have errors that disable our program from working.
This is especially frustrating if it is an error we cannot quickly find, so we waste our time, which we could be spending doing something else.
Most errors in writing a program come down to syntax – we usually forget a bracket or an apostrophe, or a block is not well attached.

	MAIN PART

	Topics for discussion

There are ways of avoiding errors in writing your programs, and some of them are:

- Make sure your code is readable.
It is unimportant what programming language you are using – whether it is blocks in something like Scratch or code in something like Python – it is particularly important that your code can easily be read by other people.
And yes, that also goes for programs which will not be seen by anybody but yourself.
Easily readable code means that the blocks are neatly and logically sorted, or that the text is written with clear spacings between lines when that is a logical thing to do.
If your program has multiple parts, it always needs to be clear which part does what.

- Use comments whenever possible.
Imagine you are a person who is seeing your code for the first time. If there is a part of the code that will not be instantly understandable to that person (assuming they know the language you are using) – you should use the option of writing comments which will explain what that part of the code is doing.

- Read other peoples' programs.
If you want the become a better photographer you should look at photographs the professionals take, and if you want to become a better basketball player you should watch NBA games.
It is always a good rule to learn from professionals to become better at something, and programming is no exception.
Go online and see how others write their code in the same programming language you are using.

If you went through all of the steps above and you are still getting an error message, you could try one of the following:

- Look at what your program is telling you the mistake is.
Whatever you are using to write your program – it will always tell you where your mistake is. This can mean that it will graphically mark that part of the program, or it will tell you in what line of code the mistake has happened, or it will tell which command or variable was problematic.
Before you change anything else – concentrate on changing the thing your program told you should change

- Use Google.
If you cannot find the error on your own, it is very possible that it is a very typical error and that you are not the first person in the world who has encountered it. An easy Google search for the type of error you're getting can often mean that you'll find a text where someone is explaining how they have struggled with the same error for hours, and more importantly how they have solved it.

- Ask somebody else to have a look at your program.
Programmers often get so „into“ their programs so that they cannot see the forest from all the trees. Sometimes we come upon an error we would usually spot very easily, but that is hard to do after you have spent hours programming. In moments like these it is useful to ask somebody else to have a look at our program.

- Take a break.
If nothing else is working – quit programming, but just for a while.
Move away from the computer, eat something, watch an episode of your favourite show, go outside for a walk, or go and take a nap.
The error will still be there when you come back, but your brain will be working in the background looking for a solution and it is very possible it will come up with an idea you have not yet tried.

Exercise 1
The teacher explains and gives instructions on how to solve tasks.
Pupils create a simple animation in Scratch.
They apply previously acquired knowledge and skills.
Pupils create an error deliberately, as a trap.
Pupils share their works and discover mistakes in other pupils ’programs.
Pupils solve tasks and present their solutions.

	CONCLUSION

	Pupils and the teacher discuss and evaluate the presented solutions.

	Methods
	Work forms

	presentation interview
discussion demonstration
work on the text role playing
graphic work
interactive exercise /simulation on the computer
	individual work
work in pairs
group work
frontal work

	Material:

	· computer, https://scratch.mit.edu

	Literature

· https://scratch.mit.edu/ideas
· https://scratch.mit.edu/explore/projects/all

	PERSONAL OBSERVATIONS, COMMENTS AND NOTES

	

	1
	Erasmus+ 2019-PL01-KA201-065077

image1.jpeg
- Erasmus+

