[image:]

Teaching programming in primary school:
curriculum, didactic methods, textbooks, online support
CodeInnova
Project co-funded by European Union under Erasmus+ Programme

	TITLE: Functions in Python

	LEARNING SCENARIO

	School:
	Duration (minutes):
	90

	Teacher:
	
	Students
age:
	13

	 Essential Idea:
	Let's meet functions in Python

	Topics:

	· Pupils deepen their understanding of the use of various software and policies.

	Aims:

	· Pupils will be able to design and create programs that utilize subroutines, appropriate structures and data types, expressions, variables and iterative and conditional commands.
· General programming languages are used to create programs.
· Pupils understand the different ways to use simulations and step-by-step organization algorithms to solve problems.

	Outcomes:

	· Pupils create a more complex game, application, or mobile application that solves a
problem from specific subject or topic.
· Pupils learn how to outline the operation of a more complex program into various patterns and generalizations.

	Work forms:

· individual work
· work in pairs
· group work

Methods:

	· presentation
· discussion
· interactive exercise

	ARTICULATION

	Course of action (duration, minutes)

	INTRODUCTION

	The teacher explains and starts a discussion with pupils:
When making solutions on a computer we usually analyze a problem and then try to divide it into smaller parts, after which we can look at the problem based on solutions of its parts.
How can we write small program solutions inside a program with which we can solve parts of the problem, and which we can call multiple times inside a program?

	MAIN PART

In computer programs every series of commands has a part to play. Some commands deal with input data, some with output data, some parts form solutions, and some of them deal with using the data according to instructions.
A series of commands that make sense to be looked at as a whole can be separated as an independent part of the program, and that is called a function.
So far we have seen some inbuilt functions such as int(), input(), print(), len()…
These functions are already built into Python and we just call them when we need them.
Besides using built-in functions, we can also make are own functions for specific tasks.
We usually need to make functions to separate independent parts of the program which tend to be repeated. When we do that our code becomes more elegant, and our programs work quicker.
In Python a new function needs to be defined, meaning we need to use commands to describe what it does. Then we need to name it and give it a list of arguments it will use. For example:
[image:]
After defining the function, we can activate it inside the program by simply calling its name. Considering that functions often use input data, we need to give that sort of data to the function if we want it to work properly. Functions can take different input parameters that the user sends them and return them when and if they are needed. There are four different types of functions in Python.

Functions that don't return value and:
- Don't have input parameters
- Have input parameters

Functions that return value and:
- Don't have input parameters
- Have input parameters

A function that has no input values and returns no values after execution.
This form of function has no input parameters, and only has values or variables inside the function itself. If the function doesn't return any values, then we don't need to use the return command. The function is executed by calling its name without any parameters in the brackets: function_name().

EXERCISE 1
Let's apply a function to draw a square with a side 100 pixels long.

[image:]

EXERCISE 2
Write a program in which we will use a function in order to add two given numbers. The sizes of the numbers (variables a and b) will be defined outside of the function, in the program.

[image:]

In this task we have written a computer program that adds two previously defined values, and that is pretty limiting. A better way to do it would be to input variables we want to add.
[image:]

If we want to call the same adding function multiple times we can put it inside a for loop.

[image:]

A function that has input values and doesn't return a value after executing
This form of function has one or multiple input parameters and doesn't return any values after executing. The function is executed by calling its name with a list of input parameters in the brackets: function_name(list of parameters).

EXERCISE 3
Let's make a function that will draw a square with a side a pixels long. The length of the side a is defined when calling the function as an input parameter.

[image:]

The function square() from the previous task uses one input parameter written inside bracketed after the name of the function. If we want to use input parameters when calling the function, then those parameters have to be defined: def square(a). A function can have many defined parameters, which will be shown in the next exercise.

EXERCISE 4
Let's write a program that will use a function to add two numbers.

[image:]

A function has no input parameters and returns no values after execution.
The input parameters are written when we change the built-in input() function, a the command „return“ returns the result of the calculation. The value that will be returned to the program is written after the return command.

EXERCISE 5
Let's write a program that will calculate and print a multiplication of two numbers. To calculate this w w will write a special function. The numbers will be written as input values to the main program.

[image:]
Explanation
We have used input values to write the values of a and b and we have called the function multi() that multiplies these two numbers. After executing the function multi(), the result is stored in the variable z as the result of multi() to the main program.

EXERCISE 6
Write a program that will input two three-digit numbers and print a number with digits smaller by 1. We'll write a function that will compare the digits and output the wanted number.
[image:]

Explanation
By using the operator % (remainder) we have separated digits of the elements written in a and b. We have then stored them in a1 and b1. By calling the function smaller() inside of print() we have compared the values of the variables a1 and b1 and returned the corresponding value into the program. That value was printed as a result.

A function that has input parameters and returns the value after execution
The most complicated form of a function is one that has input parameters and outputs a value after executing. We can see that such a function has to have a list of expected parameters when we define it, and also has to have a value after the return command.

EXERCISE 7
Let's write a program that will calculate a sum of the first n natural numbers. Inside the program we will apply the function for calculating the addition of given numbers.

[image:]

EXERCISE 8
In tasks for practicing math we have often seen prime numbers. For example, a student has had to check if a number is prime or not. Let's help a student and write a programe that will take any number as an input and see if it's a prime numbers. In our program we will use a function that will return a message saying whether the number is a prime or not.
[image:]

Explanation
We know that prime numbers can't be divided by anything but one (1) and themselves. So we only need to check whether n can be divided by other numbers from 2 to n-1. If there are no such numbers, n is a prime number.
The for loop makes sure that we go through all the numbers. If we find such a number, the value of x will be changed.

EXERCISE 9
Let's upgrade our last program so that it prints out numbers until it comes to zero. With every number it will also print out a message saying whether the number is a prime.

[image:]

EXCERCISE 10
According to the previous example, pupils can design, create and test their own examples.

	CONCLUSION

	Pupils and a teacher discuss and evaluate the presented solutions.

	Methods
	Work forms

	presentation interview
discussion demonstration
work on the text role playing
graphic work
interactive exercise /simulation on the computer
	individual work
work in pairs
group work
frontal work

	Material:

	· computer, Python

	Literature

· https://www.python.org
· https://www.edx.org/learn/python
· https://www.beetrootacademy.se/python

	PERSONAL OBSERVATIONS, COMMENTS AND NOTES

	

	1
	Erasmus+ 2019-PL01-KA201-065077

image3.png
Computer program Test example

a=5 >>>(zbroji ()
b=10 2 je 15 %
def zbroji(): .
z=a+b Calling the
print ('zbroj je',z) function
I

image4.png
‘Computer program Test example

def zbroji(): >>> zbroji()
=int (input ('Broj az ')) Broj a? 3
nt (input ('Broj b? ')) Broj b? 4

+b zbroj je 7
print ('zbroj je',z) >>>

image5.png
Computer program Test example

def zbroji(): Broj a? 3

a=int (input ('Broj a? ')) Broj b? 4
nt (input ('Broj b2 ')) zbroj je 7
+b 4
print (*zbroj je',z) Broj a? 5
for i in range(3): Broj b? 6
zbroji() zZbroj je 11
print Oy v
>~ y Broj a? 7
The command print() has a task of Broj b2 8
creating one empty row between the zbroj je 15
printed values

>>>

image6.png
Commands in the interface

Graphical screen

>>>
>>>

>>>
>>>
>>>

from turtle
def kvadrat (

for i in range

fd(a)
1t (90

kvadrat (100)
kvadrat (50)

import*
a

(4):

P—

/4

Multiple calls of the
same function will
draw more squares
with different sizes of
the side a

image7.png
Computer program Test example

def zbroji(a,b): >>>(zbroji(s,7)
z=a+b zbroj je 12 »
print ('zbroj je',z) >>> Calling the

function

image8.png
def multi():
e

revurn z

nt (input (‘Enter the first mumber: ')

b=int (input (‘Enter the second mumber: ')

print('The result is',malei())|

image9.png
a=int (input('Write the first number'))
beint (input ('Write the second mumber'))

al = a0
bl = bE10
def smaller()
if al<pl:
return a
else:
retumn b

print ('Number', smaller(), 'has a smaller digit.')|

image10.png
Computer program Test example

def zbroji(n): Upisi broj n: 5
2=0 zbroj prvih 5 brojeva je 15
for i in range(l,n+1): >>>
z=z+i Upisi broj n: 7
et 2 zbroj prvih 7 brojeva je 28

n=int (input ('Upi3i broj n: ')) o

print (*zbroj prvih',n, 'brojeva je',zbroji(n))

image11.png
def prime(n):
x='The number is a prime’
for i in range(2,m):

it nas—
x='Tne mumber is not a prime’

revumn x

n=int (input ("Write a number: '))

print (prime (d))

image12.png
The program

Test examples

def prost(n):
x='Broj je prost.'
for i in range(2,n):
if nei==0:

x='Broj nije prost.'

return x
n=int (input ('Upisi broj: ')
while :
print (prost (n))
print ()
n=int (input ('Upisi broj:

")

Upi3i broj: 6
Broj nije prost.

Upisi broj: 7

. . prog:
Upi3i broj: 8
Broj nije prost

Upi3i broj
>>>

Broj e prost. (Stopsthe

image1.png
=t funcion name (paramethers):
block o commands
retuzn valud

image2.png
‘Commands in the interactive
interface

Graphical screen

>>> from turtle import®
>>> def kvadrat():
for i in range(4):
£4(100) w
1t(90)

Defining the
function

>(kvadrat ())«
> Calling the
function

Drawing a square
>

image13.jpeg
- Erasmus+

